Publications

(2023). Benchmarks and explanations for deep learning estimates of X-ray galaxy cluster masses. mnras.
(2023). Information-Ordered Bottlenecks for Adaptive Semantic Compression. arXiv e-prints.
(2022). A Machine-learning Approach to Enhancing eROSITA Observations. apj.
(2022). The dynamical mass of the Coma cluster from deep learning. Nature Astronomy.
(2021). CLMM: a LSST-DESC cluster weak lensing mass modeling library for cosmology. mnras.
(2019). A Robust and Efficient Deep Learning Method for Dynamical Mass Measurements of Galaxy Clusters. apj.