Metallicity Dependence of Pressure-regulated Feedback-modulated Star Formation in the TIGRESS-NCR Simulation Suite
Sep 1, 2024·,,,,,,
,,,·
1 min read
Chang-Goo Kim
Eve C. Ostriker
Jeong-Gyu Kim
Munan Gong
Greg L. Bryan
Drummond B. Fielding
Sultan Hassan

Matthew Ho
Sarah M.~R. Jeffreson
Rachel S. Somerville
Ulrich P. Steinwandel
Abstract
We present a new suite of numerical simulations of the star-forming interstellar medium (ISM) in galactic disks using the TIGRESS-NCR framework. Distinctive aspects of our simulation suite are (1) sophisticated and comprehensive numerical treatments of essential physical processes including magnetohydrodynamics, self-gravity, and galactic differential rotation, as well as photochemistry, cooling, and heating coupled with direct ray-tracing UV radiation transfer and resolved supernova feedback and (2) wide parameter coverage including the variation in metallicity over <mml:math overflow="scroll">mml:miZ</mml:mi><mml:mo accent="false">’</mml:mo>mml:mo≡</mml:mo>mml:miZ</mml:mi><mml:mo stretchy="true">/</mml:mo>mml:msubmml:miZ</mml:mi>mml:mo⊙</mml:mo></mml:msub>mml:mo∼</mml:mo>mml:mn0.1</mml:mn>mml:mo-</mml:mo>mml:mn3</mml:mn></mml:math> , gas surface density Σgas ∼ 5–150 M ⊙ pc‑2, and stellar surface density Σstar ∼ 1–50 M ⊙ pc‑2. The range of emergent star formation rate surface density is ΣSFR ∼ 10‑4–0.5 M ⊙ kpc‑2 yr‑1, and ISM total midplane pressure is P tot/k B = 103–106 cm‑3 K, with P tot equal to the ISM weight <mml:math overflow="scroll"><mml:mi class="MJX-tex-calligraphic" mathvariant="script">W</mml:mi></mml:math> . For given Σgas and Σstar, we find <mml:math overflow="scroll">mml:msubmml:mrow<mml:mi mathvariant="normal">Σ</mml:mi></mml:mrow>mml:mrowmml:miSFR</mml:mi></mml:mrow></mml:msub>mml:mo∝</mml:mo>mml:miZ</mml:mi>mml:msupmml:mrow<mml:mo accent="true">’</mml:mo></mml:mrow>mml:mrowmml:mn0.3</mml:mn></mml:mrow></mml:msup></mml:math> . We provide an interpretation based on the pressure-regulated feedback-modulated (PRFM) star formation theory. The total midplane pressure consists of thermal, turbulent, and magnetic stresses. We characterize feedback modulation in terms of the yield ϒ, defined as the ratio of each stress to ΣSFR. The thermal feedback yield varies sensitively with both weight and metallicity as <mml:math overflow="scroll">mml:msubmml:mrow<mml:mi mathvariant="normal">ϒ</mml:mi></mml:mrow>mml:mrowmml:mith</mml:mi></mml:mrow></mml:msub>mml:mo∝</mml:mo>mml:msupmml:mrow<mml:mi class="MJX-tex-calligraphic" mathvariant="script">W</mml:mi></mml:mrow>mml:mrowmml:mo‑</mml:mo>mml:mn0.46</mml:mn></mml:mrow></mml:msup>mml:miZ</mml:mi>mml:msupmml:mrow<mml:mo accent="true">’</mml:mo></mml:mrow>mml:mrowmml:mo‑</mml:mo>mml:mn0.53</mml:mn></mml:mrow></mml:msup></mml:math> , while the combined turbulent and magnetic feedback yield shows weaker dependence <mml:math overflow="scroll">mml:msubmml:mrow<mml:mi mathvariant="normal">ϒ</mml:mi></mml:mrow>mml:mrowmml:miturb</mml:mi>mml:mo+</mml:mo>mml:mimag</mml:mi></mml:mrow></mml:msub>mml:mo∝</mml:mo>mml:msupmml:mrow<mml:mi class="MJX-tex-calligraphic" mathvariant="script">W</mml:mi></mml:mrow>mml:mrowmml:mo‑</mml:mo>mml:mn0.22</mml:mn></mml:mrow></mml:msup>mml:miZ</mml:mi>mml:msupmml:mrow<mml:mo accent="true">’</mml:mo></mml:mrow>mml:mrowmml:mo‑</mml:mo>mml:mn0.18</mml:mn></mml:mrow></mml:msup></mml:math> . The reduction in ΣSFR at low metallicity is due mainly to enhanced thermal feedback yield, resulting from reduced attenuation of UV radiation. With the metallicity-dependent calibrations we provide, PRFM theory can be used for a new subgrid star formation prescription in cosmological simulations where the ISM is unresolved.
Type
Publication
apj
Add the full text or supplementary notes for the publication here using Markdown formatting.